Dimensionality reduction in Bayesian estimation algorithms
نویسندگان
چکیده
منابع مشابه
Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملDimensionality reduction using genetic algorithms
Pattern recognition generally requires that objects be described in terms of a set of measurable features. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, inc...
متن کاملSparse Unsupervised Dimensionality Reduction Algorithms
Principal component analysis (PCA) and its dual—principal coordinate analysis (PCO)—are widely applied to unsupervised dimensionality reduction. In this paper, we show that PCA and PCO can be carried out under regression frameworks. Thus, it is convenient to incorporate sparse techniques into the regression frameworks. In particular, we propose a sparse PCA model and a sparse PCO model. The for...
متن کاملOrdinal Embedding: Approximation Algorithms and Dimensionality Reduction
This paper studies how to optimally embed a general metric, represented by a graph, into a target space while preserving the relative magnitudes of most distances. More precisely, in an ordinal embedding, we must preserve the relative order between pairs of distances (which pairs are larger or smaller), and not necessarily the values of the distances themselves. The relaxation of an ordinal emb...
متن کاملEvaluating a Class of Dimensionality Reduction Algorithms
High-dimensional index structures (R* tree, SS-tree) are used for retrieval of multimedia objects in databases. As dimensionality increases, query performance in the index structures degrades. Dimensionality reduction algorithms are the only known solution that supports scalable object retrieval and satisfies precision of query results. By combining the methods from pattern recognition, multime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Atmospheric Measurement Techniques
سال: 2013
ISSN: 1867-8548
DOI: 10.5194/amt-6-2267-2013